Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2009-Jan

Cyclic GMP acts as a common regulator for the transcriptional activation of the flavonoid biosynthetic pathway in soybean.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Kenji Suita
Takaaki Kiryu
Maki Sawada
Maiko Mitsui
Masataka Nakagawa
Kengo Kanamaru
Hiroshi Yamagata

Parole chiave

Astratto

Cyclic GMP (cGMP) is an important signaling molecule that controls a range of cellular functions. So far, however, only a few genes have been found to be regulated by cGMP in higher plants. We investigated the cGMP-responsiveness of several genes encoding flavonoid-biosynthetic enzymes in soybean (Glycine max L.) involved in legume-specific isoflavone, phytoalexin and anthocyanin biosynthesis, such as phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate:CoA ligase, chalcone synthase, chalcone reductase, chalcone isomerase, 2-hydroxyisoflavanone synthase, 2-hydroxyisoflavanone dehydratase, anthocyanidin synthase, UDP-glucose:isoflavone 7-O-glucosyltransferase, and isoflavone reductase, and found that the majority of these genes were induced by cGMP but not by cAMP. All cGMP-induced genes were also stimulated by sodium nitroprusside (SNP), a nitric oxide (NO) donor, and illumination of cultured cells with white light. The NO-dependent induction of these genes was blocked by 6-anilino-5,8-quinolinedione, an inhibitor of guanylyl cyclase. Moreover, cGMP levels in cultured cells were transiently increased by SNP. Consistent with the increases of these transcripts, the accumulation of anthocyanin in response to cGMP, NO, and white light was observed. The treatment of soybean cotyledons with SNP resulted in a high accumulation of isoflavones such as daidzein and genistein. Loss- and gain-of-function experiments with the promoter of chalcone reductase gene indicated the Unit I-independent activation of gene expression by cGMP. Together, these results suggest that cGMP acts as a second messenger to activate the expression of genes for enzymes involved in the flavonoid biosynthetic pathway in soybean.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge