Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2019-Nov

Drought-induced disturbance of carbohydrate metabolism in anthers and male abortion of two Gossypium hirsutum cultivars differing in drought tolerance.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Wei Hu
Yanjun Huang
Dimitra Loka
Hua Bai
Yu Liu
Shanshan Wang
Zhiguo Zhou

Parole chiave

Astratto

Cotton pollen abortion, under drought stress, was closely associated with changes in anther carbohydrate metabolism, and pollen abortion rate due to drought was higher in drought-sensitive cultivars than drought-tolerant cultivars. Cotton reproductive failure under drought stress is intrinsically connected with altered male fertility, however, studies investigating the effect of drought stress on cotton male fertility are nonexistent. Thus, a drought stress experiment was conducted with two cotton cultivars, differing in drought tolerance, to study pollen fertility and anthers' physiology. Results indicated that drought stress reduced pollen fertility of both cultivars due to decreases in anther starch and adenosine triphosphate (ATP) synthesis. Lower assimilate supply capacity in conjunction with impaired activities of ADP-glucose pyrophosphorylase and soluble starch synthase were the main reasons for the decreased starch levels in drought-stressed anthers. The decreased activities of sucrose synthetase and acid invertase were responsible for the higher sucrose level in drought-stressed anthers than well-watered anthers and the changing trend of sucrose was intensified by the decreased expressions of sucrose synthase genes (GhSusA, GhSusB, GhSusD) and acid invertase genes (GhINV1, GhINV2). However, despite sucrose degradation being limited in drought-stressed anthers, glucose level was higher in droughted anthers than well-watered ones, and that might be attributed to the down-regulated respiration since decreased anther ATP levels were detected in drought-stressed plants. Furthermore, compared to the drought-tolerant cultivar, pollen fertility was more suppressed by drought stress for the drought-sensitive cultivar, and that was attributed to the larger decrease in starch and ATP contents.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge