Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2019-Sep

Dual-Action Pesticide Carrier That Continuously Induces Plant Resistance, Enhances Plant Anti-Tobacco Mosaic Virus Activity, and Promotes Plant Growth.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Shunyu Xiang
Xing Lv
Linhai He
Huan Shi
Shuyue Liao
Changyun Liu
Qianqiao Huang
Xinyu Li
Xiaoting He
Haitao Chen

Parole chiave

Astratto

Improving plant resistance against systemic diseases remains a challenging research topic. In this study, we developed a dual-action pesticide-loaded hydrogel with the capacity to significantly induce plant resistance against tobacco mosaic virus (TMV) infection and promote plant growth. We produced an alginate-lentinan-amino-oligosaccharide hydrogel (ALA-hydrogel) by coating the surface of an alginate-lentinan drug-loaded hydrogel (AL-hydrogel) with amino-oligosaccharide using electrostatic action. We determined the formation of the amino-oligosaccharide film using various approaches, including Fourier transform infrared spectrometry, the ζ potential test, scanning electron microscopy, and elemental analysis. It was found that the ALA-hydrogel exhibited stable sustained-release activity, and the release time was significantly longer than that of the AL-hydrogel. In addition, we demonstrated that the ALA-hydrogel was able to continuously and strongly induce plant resistance against TMV and increase the release of calcium ions to promote Nicotiana benthamiana growth. Meanwhile, the ALA-hydrogel maintained an extremely high safety to organisms. Our findings provide an alternative to the traditional approach of applying pesticide for controlling plant viral diseases. In the future, this hydrogel with the simple synthesis method, green synthetic materials, and its efficiency in the induction of plant resistance will attract increasing attention and have good potential to be employed in plant protection and agricultural production.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge