Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Physiology and Biochemistry 2009-May

Hepatocyte inflammation model for cytotoxicity research: fructose or glycolaldehyde as a source of endogenous toxins.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
C Y Feng
S Wong
Q Dong
J Bruce
R Mehta
W R Bruce
P J O'Brien

Parole chiave

Astratto

Insulin resistance and hepatotoxicity induced in high fructose fed rats may involve fructose derived endogenous toxins formed by inflammation. Thus fructose was seventy-fold more toxic if hepatocytes were exposed to non-toxic levels of hydrogen peroxide (H(2)O(2)) released by inflammatory cells. This was prevented by iron (Fe) chelators, hydroxyl radical scavengers, and increased by Fe, copper (Cu) or catalase inhibition. Fructose or glyceraldehyde/dihydroxyacetone metabolites were oxidized by Fenton radicals to glyoxal. Glyoxal (15 microM) cytotoxicity was increased about 200-fold by H(2)O(2). Glycolaldehyde was enzymically formed from glyceraldehyde, the fructokinase/aldolase B product of fructose. Glycolaldehyde cytotoxicity was increased 20-fold by H(2)O(2). The oxidative stress cytotoxicity induced was attributed to the Fenton oxidation of glycolaldehyde forming glycolaldehyde radicals and glyoxal, since cytotoxicity was prevented by aminoguanidine (glyoxal trap) or Fenton inhibitors. Glyoxal was also the Fenton product responsible for glycolaldehyde protein carbonylation as carbonylation was prevented by aminoguanidine or Fenton inhibitors.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge