Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Botany 2020-Jul

Endopolyploidy is associated with leaf functional traits and climate variation in Arabidopsis thaliana

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Evan Pacey
Hafiz Maherali
Brian Husband

Parole chiave

Astratto

Premise: Endopolyploidy is widespread throughout the tree of life and is especially prevalent in herbaceous angiosperms. Its prevalence in this clade suggests that endopolyploidy may be adaptive, but its functional roles are poorly understood. To address this gap in knowledge, we explored whether endopolyploidy was associated with climatic factors and correlated with phenotypic traits related to growth.

Methods: We sampled stem and leaf endopolyploidy in 56 geographically separated accessions of Arabidopsis thaliana grown in a common garden to explore species variation and to determine whether this variation was correlated with climatic variables and other plant traits.

Results: Stem endopolyploidy was not associated with climate or other traits. However, leaf endopolyploidy was significantly higher in accessions from drier and colder environments. Moreover, leaf endopolyploidy was positively correlated with apparent chlorophyll content and leaf dry mass.

Conclusions: Endopolyploidy may have a functional role in the storage of chloroplasts and starch, and it may offer an adaptive avenue of tissue growth in cold and dry environments.

Keywords: PET ratio; annual mean temperature; chlorophyll concentration; days to bolting; endopolyploidy index; endoreduplication; flow cytometry; leaf size; natural variation; specific leaf area.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge