Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Behavior 2012-Jan

Acute hyperglycemia is related to gastrointestinal symptoms in motion sickness: an experimental study.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Feng-Feng Mo
Hai-Hong Qin
Xiao-Li Wang
Zhi-Lei Shen
Zheng Xu
Kai-Hua Wang
Yi-Ling Cai
Min Li

キーワード

概要

Motion sickness is caused by exposure to unfamiliar motions and typical symptoms of motion sickness include nausea and vomiting. To observe the metabolic and hormonal differences between nausea/vomiting (NAV) subjects and non-nausea/vomiting (NNV) ones, and to understand how the differences in metabolites and hormones affect the tolerance of organism to acceleration, 60 volunteers were exposed to repetitive acceleration using a 6-degree-of-freedom ship motion simulator. Meanwhile, 36 rats were randomly divided into three groups: an acceleration model group (n=14, exposed to acceleration), insulin group (n=14, intraperitoneal injection of insulin 30 min before exposure to acceleration), and control group (n=8). Gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF/MS) was applied to analyze the serum metabolites in human subjects. Serum glucocorticoid, insulin, and glucagon levels were determined by radioimmunoassay in the NAV and NNV subjects as well as in rats, and serum epinephrine level was determined by ELISA. After acceleration exposure, 9 metabolites, including L-histidine, L-ornithine, L-serine, L-tyrosine, pyroglutamic acid, fumaric acid, urea, n-dodecanoic acid and n-tetradecanoic acid, had different changes in the NAV and NNV groups. The serum levels of 4-hydroxy-L-proline, glucose, oleic acid and urea were significantly higher in the NAV group than in the NNV group after exposure; however, only the elevation degree of serum glucose was significantly greater in the NAV group than in the NNV group (P<0.05). Serum cortisol and epinephrine were increased in both groups. Before exposure, insulin level in the NAV group was significantly lower than that in the NNV group (P<0.05). After rotation exposure, rat serum glucose in the insulin group was significantly lower than that in the acceleration model group (P<0.001), and the motion sickness index was significantly lower than that in the acceleration model group (P<0.05). Our study provides the first evidence that stable glucose level can help to relieve gastrointestinal symptoms in motion sickness, and suggests that acute hyperglycemia is related to gastrointestinal symptoms in motion sickness.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge