Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Behavioural Brain Research 2008-Dec

Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Yushi Gong
Liegang Liu
Bijun Xie
Yongcheng Liao
Erling Yang
Zhida Sun

キーワード

概要

We investigated the effects of lotus seedpod proanthocyanidins (LSPC) administration by oral gavage for 3 months on body weight, learning and memory deficits using Y-maze test, oxidative stress and antioxidative enzyme activity in brain and serum of the senescence-accelerated mice (SAMP8) and the senescence-resistant mice (SAMR1). Mice of each group were weighed weekly. Brain was obtained from SAMP8 and SAMR1 (the control mouse for SAMP8) at 6 months of age and serum was available from SAMP8 and SAMR1 at 3, 4, 5 and 6 months of age. The results of body weight showed that 90mg/kg LSPC administration significantly increased body weight at 5.5 and 6 months of age in SAMP8 when compared with control SAMP8 of the same age. Y-maze test indicated that learning and memory abilities of mice were deteriorated significantly at 6 months of age in SAMP8 compared with age-matched SAMR1, but were remarkably improved after LSPC (60, 90, 120mg/kg body weight) administration beginning at 3 months of ages. Malondialdehyde (MDA), nitric oxide (NO) and nitric oxide synthase (NOS) exhibited significant increases mostly at 5 and 6 months of age in SAMP8. Glutathione (GSH), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities decreased significantly mostly at 5 and 6 months of age in SAMP8. LSPC (60, 90, 120mg/kg body weight) administration beginning at 3 months of ages decreased MDA, NO content and lowered NOS activity in the brain and serum of SAMP8. Furthermore, LSPC significantly increased GSH level and augmented GPx, SOD activity in the brain and serum of SAMP8. These results suggest that an age-related increase in brain tissue vulnerability to oxidation and deterioration in learning and memory abilities in SAM that can be modified by LSPC, most likely through the ability of LSPC to scavenge oxygen free radicals and to stimulate antioxidant enzyme activity.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge