Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials Science and Engineering C 2020-Feb

Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Fatma Küp
Seval Çoşkunçay
Fatih Duman

キーワード

概要

Biosynthesis of metal nanoparticles is expected as a cost efficient and ecofriendly option in the research study. Therefore, the aqueous extracts made from leaf of Aesculus hippocastanum (horse chestnut) were used as the reducing factors to synthesize silver nanoparticles (AgNPs) and their antioxidant, antibacterial and the application of resveratrol combined AgNPs as efficient delivery vehicles have also been evaluated. The biosynthesized AgNPs were characterized by UV-Visible Spectroscopy, Fourier-Transform Infrared Spectroscopy (FTIR), X Ray Diffraction (XRD), Zeta potential, and Scanning Electron Microscopy (SEM). The AgNPs were found to be stable at -29.1 mV through zeta potential study. According to the UV-Vis measurements, AgNP formation was observed at a wavelength range of 420-470 nm. The Ag NPs were spherical with a size of 50 ± 5 nm. AgNPs exhibited strong antibacterial activity against all tested bacterial species but have no effect against fungal strains. AgNPs showed an important inhibitive activity counter the DPPH radical and thereby indicate a source for antioxidants. The free radical scavenging activity of AgNP was calculated as 54.72% at the highest concentration (100 ppm). The superoxide radical scavenging activity of AgNPs was found to be increased with increasing concentrations and the average inhibition was about 62.9% as compared to the activity of plant extract. In vitro investigations on the drug delivery from AgNPs exhibited pH dependency; the release was significant (45.6%) below acidic terms (pH 5.2) when in proportion to physiological terms (pH7.4). It was observed that the resveratrol-combined to AgNPs stays on the nanoparticle surface for a lengthy time in the plasma at physiological pH (7.4), so very reducing the flank influence on the normal tissues. It can be concluded that horse chestnut leaves has reduction potential as well as being a capping agent to produce well-defined nanoscale silver particles. Our biosynthesized Ag NPs can be used antibacterial, antioxidant agent and also for as effective delivery vehicles in the near future.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge