Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2011-Jun

Chelate-assisted phytoextraction of mercury in biosolids.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Cristina Lomonte
Augustine Doronila
David Gregory
Alan J M Baker
Spas D Kolev

キーワード

概要

Mercury contaminated stockpiles of biosolids (8.4 mg kg⁻¹ Hg) from Melbourne Water's Western Treatment Plant (MW-WTP) were investigated to evaluate the possibility of their Hg chelate-assisted phytoextraction. The effects of ammonium thiosulphate (NH₄)₂S₂O₃, cysteine (Cys), nitrilotriacetic acid (NTA), and potassium iodide (KI) were studied to mobilize Hg and to increase its uptake in plant shoots. Three plant species were selected for this study, one herbaceous and two grasses: Atriplex codonocarpa, Austrodanthonia caespitosa and Vetiveria zizanioides. KI proved to be the best candidate for Hg phytostabilization in biosolids because it facilitated the concentration of this metal mainly in roots. (NH₄)₂S₂O₃ was shown to be the most effective chelating agent among those tested for Hg phytoextraction as it allowed the highest translocation of Hg into the above-ground tissues of the selected plant species. The phytoextraction conditions using A. caespitosa as the best performing plant species were optimized at an (NH₄)₂S₂O₃ concentration of 27 mmol kg⁻¹ and contact time with biosolids of seven day. Monitoring of the Hg concentration in biosolids and in leachate water during a 9-day treatment revealed that the biosolids Hg concentration decreased significantly after the first day of treatment and then it decreased only slightly with time reaching a value of 5.6 mg kg⁻¹ Hg at the end of the 9-day period. From the corresponding results obtained for the leachate water, it was suggested that a relatively large fraction of Hg (0.7 mg kg⁻¹ Hg) was promptly mobilized and consequently the plants were able to take up the metal and translocate it into shoots.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge