Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Recognition 2015-Mar

Development of novel sophorolipids with improved cytotoxic activity toward MDA-MB-231 breast cancer cells.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Isabel A C Ribeiro
Célia M C Faustino
Patrícia S Guerreiro
Raquel F M Frade
M Rosário Bronze
Matilde F Castro
Maria H L Ribeiro

キーワード

概要

Sophorolipids (SLs) are glycolipid biosurfactants, produced as a mixture of several compounds by some nonpathogenic yeast. In the current study, separation of individual SLs from mixtures with further evaluation of their surface properties and biologic activity on MDA-MB-321 breast cancer cell line were investigated. SLs were biosynthesized by Starmerella bombicola in a culture media supplemented with borage oil. A reverse-phase flash chromatography method with an automated system coupled with a prepacked cartridge was used to separate and purify the main SLs. Compositional analysis of SLs was performed by high-performance liquid chromatography with electrospray ionization mass spectrometry and tandem mass spectrometry. The following diacetylated lactonic SLs were isolated and purified: C18:0, C18:1, C18:2, and C18:3. The critical micelle concentration (CMC) and surface tension at CMC (γCMC ) of the purified SLs showed an increase with the number of double bonds. High cytotoxic effect against MDA-MB-231 cells was observed with C18:0 and C18:1 lactonic SLs. The cytotoxic effects of C18:3 lactonic SL on cancerous cells were for the first time studied. This cytotoxic effect was considerably higher than the promoted by acidic SLs; however, it induced a lower effect than the previously mentioned SLs, C18:0 and C18:1. To our knowledge, for the first time, C18:1 lactonic SL, in selected concentrations, proved to be able to inhibit MDA-MB-231 cell migration without compromising cell viability and to increase intracellular reactive oxygen species.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge