Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Botany 2002-May

Early ovule development following self- and cross-pollinations in Eucalyptus globulus Labill. ssp. globulus.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
L M Pound
M A B Wallwork
B M Potts
M Sedgley

キーワード

概要

The study was conducted to identify the self-incompatibility mechanism in Eucalyptus globulus ssp. globulus. Controlled self- and cross-pollinations were conducted on individual flowers from three mature trees that had self-incompatibility levels of 76, 99.6 and 100%. Flowers were harvested at 4, 6 and 8 weeks after pollination. Embryology was investigated by bright field microscopy on material harvested at 4 and 6 weeks after pollination. Fertilization had taken place at 4 weeks after pollination with zygotes and free nuclear endosperm visible. There was a greater proportion of healthy, fertilized ovules in the cross- compared with the self-pollination treatment, and approx. half the ovules examined from both pollen treatments were not fertilized or were degenerating. By 6 weeks after pollination a few zygotes were starting to divide. The number of healthy, fertilized ovules was still greater in the cross-pollination treatment, but the number of healthy fertilized ovules was lower in both treatments compared with 4 weeks after pollination, and many ovules were degenerating. Fertilized ovules were significantly larger than non-fertilized or degenerating ovules and this difference was detectable by eye at 6 and 8 weeks after pollination. The mechanism of self-incompatibility appears to have both late pre- and post-zygotic components.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge