Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Molecular Biology of Plants 2019-Jan

Effect of elicitors on the metabolites in the suspension cell culture of Salvia miltiorrhiza Bunge.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Yan Yu
Tao Wang
Yichao Wu
Yonghong Zhou
Yuanyuan Jiang
Li Zhang

キーワード

概要

The effect of elicitors on the metabolites in the suspension cells of Salvia miltiorrhiza Bunge was elucidated by comparing and analyzing the metabolites of induced and uninduced suspension cells. The primary metabolites were detected by GC-MS. Twelve types of secondary metabolites, namely, shikimic acid, tanshinol, protocatechuic acid, caffeic acid, p-coumaric acid, rosmarinic acid, salvianolic acid B, salvianolic acid A, dihydrotanshinone, cryptotanshinone, tanshinone I, and tanshinone II A were detected by HPLC. Results indicated a total of 90 primary metabolites in the cells. These metabolites consisted of 49 kinds of sugars and their derivatives, 15 organic acids, 9 amino acids and their derivatives, 9 hydrocarbons, and 8 other substances. OPLS-DA results indicated five differential primary metabolites, namely, gluconic acid, mannopyranose, glucose, inositol, and ketoisovalerate, between the callus and suspension cells. SA significantly induced glucose metabolism in the S. miltiorrhiza suspension cells, and the mean contents of glucose, fructose, and mannose were significantly lower in the induced cells than in the control. However, SA, as a plant inducer, could significantly promote the increase in 10 secondary metabolites, except protocatechuic acid and tanshinone I, in the suspension cells at different times or degrees. The effect of NaCl on the S. miltiorrhiza cell mainly depended on the downstream pathway of glucose metabolism. Fructose and glucose were the decomposition products of sucrose, and glucose was processed through monosaccharide metabolism. Induction by NaCl resulted in significantly lower levels of these primary metabolites in the induced cells than in the control group. However, NaCl could significantly promote 10 secondary metabolites, except tanshinol and protocatechuic acid, at different times or degrees. After elicitation by AgNO3, sucrose and proline were higher in the induced cells than in the control group. However, galactose and fructose were lower in the experimental cells than in the control. This phenomenon may have been caused by the induction of plant stress response by AgNO3. AgNO3 could significantly promote shikimic acid, caffeic acid, p-coumaric acid, rosmarinic acid, salvianolic acid B, salvianolic acid A, dihydrotanshinone, cryptotanshinone, tanshinone I, and tanshinone IIA. This study will provide a reference for future studies on the effects of primary metabolites on the secondary metabolites and the potential relation of these metabolites to plant stress response in S. miltiorrhiza.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge