Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Medical Hypotheses 2011-Jun

Glatiramer acetate could be a hypothetical therapeutic agent for neuromyelitis optica.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Kai-Chen Wang
Chao-Lin Lee
Shao-Yuan Chen
Kuan-Hsiang Lin
Ching-Piao Tsai

キーワード

概要

Neuromyelitis optica (NMO) is characterized by concurrence of optic neuritis and transverse myelitis, which is typically associated with a spinal cord lesion extending three or more vertebral segments. NMO is an inflammatory, demyelinating central nervous system disorder, and although it has a relapsing course in more than 90% of patients, it differs from multiple sclerosis in that it is more severe, usually spares the brain, and is associated with a longitudinally extensive lesion on spinal cord magnetic resonance imaging (MRI). Furthermore, NMO is associated with a highly specific serum marker called anti-aquaporin-4 antibody, which is believed to have a central pathogenetic role in NMO. Treatment with B-cell specific monoclonal antibody (rituximab) and plasma exchanges appears to reduce the severity and frequency of attacks in NMO, and therefore, B-cell autoimmunity as well as a humoral mechanism may be involved in the pathogenesis of NMO. Glatiramer acetate (GA; also known as Copaxone, COP-1) is a synthetic copolymer of a pool of peptides composed of random sequences of four amino acids: glutamine, lysine, alanine, and tyrosine. GA-specific T-helper 1- (Th1) and 2-type (Th2) cells produce brain-derived neurotrophic factor (BDNF), which may affect neuronal survival and myelin repair. GA treatment also leads to sustained augmentation of BDNF, neurotrophin (NT)-3, and NT-4 expression in various brain regions as demonstrated by histological analysis of immunostained brain sections and BDNF elevation after GA treatment on both protein and mRNA levels. GA-Th2 activation may also have a neuroprotective role in the course of NMO. Furthermore, B cells from GA-treated mice suppress experimental autoimmune encephalomyelitis. The pathogenesis of NMO is largely unknown. However, there is some evidence that B-cell autoimmunity, activation of eosinophils, and B-cell activating factor play important roles, based on neurotrophic factors, neuroprotection, anti-inflammation, and B-cell modulation, GA is thus a hypothetic potential treatment agent for NMO.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge