Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Comparative biochemistry and physiology. Part D, Genomics & proteomics 2019-Jun

Glucose and urea metabolic enzymes are differentially phosphorylated during freezing, anoxia, and dehydration exposures in a freeze tolerant frog.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Liam Hawkins
Minjing Wang
Baowen Zhang
Qi Xiao
Hui Wang
Kenneth Storey

キーワード

概要

Vertebrate freeze tolerance requires multiple adaptations underpinned by specialized biochemistry. Freezing of extracellular water leads to intracellular dehydration as pure water is incorporated into growing ice crystals and also results in the cessation of blood supply to tissues, creating an anoxic cellular environment. Hence, the freeze tolerant wood frog, Rana sylvatica, must endure both dehydration and anoxia stresses in addition to freezing. The metabolic responses to freezing, dehydration and anoxia involve both protein/enzyme adaptations and the production of metabolites with metabolic or osmotic functions, particularly glucose and urea. The present study uses a phosphoproteome analysis to examine the differential phosphorylation of metabolic enzymes involved in the production of these two metabolites in liver in response to freezing, anoxia, or dehydration exposures. Our results show stress-specific responses in the abundance of phosphopeptides retrieved from nine glycolytic enzymes and three urea cycle enzymes in liver of wood frogs exposed to 24 h freezing, 24 h anoxia, or dehydration to 40% of total body water loss, as compared with 5 °C acclimated controls. Data show changes in the abundance of phosphopeptides belonging to glycogen phosphorylase (GP) and phosphofructokinase 2 (PFK2) that were consistent with differential phosphorylation control of glycogenolysis and a metabolic block at PFK1 that can facilitate glucose synthesis as the cryoprotectant during freezing. Anoxia-exposed animals showed similar changes in GP phosphorylation but no changes to PFK2; changes that would facilitate mobilization of glycogen as a fermentative fuel for anaerobic glycolysis. Urea is commonly produced as a compatible osmolyte in response to amphibian dehydration. Selected urea cycle enzymes showed small changes in phosphopeptide abundance in response to dehydration, but during freezing differential phosphorylation occurred that may facilitate this ATP expensive process when energy resources are sparse. These results add to the growing body of literature demonstrating the importance and efficiency of reversible protein phosphorylation as a regulatory mechanism allowing animals to rapidly respond to environmental stress.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge