Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Protoplasma 2015-Jul

He-Ne laser preillumination improves the resistance of tall fescue (Festuca arundinacea Schreb.) seedlings to high saline conditions.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Li-Mei Gao
Yong-Feng Li
Rong Han

キーワード

概要

In this paper, we explored the protective effect and physiochemical mechanism of He-Ne laser preillumination in enhancement of tall fescue seedlings tolerance to high salt stress. The results showed that salt stress greatly reduced plant growth, plant height, biomass, leaf development, ascorbate acid (AsA) and glutathione (GSH) concentration, the enzymatic activities, and gene expression levels of antioxidant enzymes such as catalase (CAT) and glutathione reductase (GR) and enhanced hydrogen peroxide (H2O2) content, superoxide radical (O2 (·-)) generation rates, membrane lipid peroxidation, relative electrolyte leakage, the enzymatic activities, and gene expression levels of superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD), compared with controls. However, He-Ne laser preillumination significantly reversed plant growth retardation, biomass loss, and leaves development decay induced by salt stress. And the values of the physiochemical parameters observed in salt-stressed plants were partially reverted or further increased by He-Ne laser. Salt stress had no obvious effect on the transcriptional activity of phytochromeB, whereas He-Ne laser markedly enhanced its transcriptional level. Preillumination with white fluorescent lamps (W), red light (RL) of the same wavelength, or RL, then far-red light (FRL) had not alleviated the inhibitory effect of salt stress on plant growth and antioxidant enzymes activities, suggesting that the effect of He-Ne laser on improved salt tolerance was most likely attributed to the induction of phytochromeB transcription activities by the laser preillumination, but not RL, FRL or other light sources. In addition, we also utilized sodium nitroprusside (SNP) as NO donor to pre-treat tall fescue seedlings at the same conditions, and further evaluated the differences of physiological effects between He-Ne laser and NO in increasing salt resistance of tall fescue. Taken together, our data illustrated that He-Ne laser preillumination contributed to conferring an increased tolerance to salt stress in tall fescue seedlings due to alleviating oxidative damage through scavenging free radicals and inducing transcriptional activities of some genes involved in plant antioxidant system, and the induction of phytochromeB transcriptional level by He-Ne laser was probably correlated with these processes. Moreover, this positive physiochemical effect seemed more effective with He-Ne laser than NO molecule.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge