Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Research communications in molecular pathology and pharmacology 2000

In vivo protection of dna damage associated apoptotic and necrotic cell deaths during acetaminophen-induced nephrotoxicity, amiodarone-induced lung toxicity and doxorubicin-induced cardiotoxicity by a novel IH636 grape seed proanthocyanidin extract.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
S D Ray
D Patel
V Wong
D Bagchi

キーワード

概要

Grape seed extract, primarily a mixture of proanthocyanidins, has been shown to modulate a wide-range of biological, pharmacological and toxicological effects which are mainly cytoprotective. This study assessed the ability of IH636 grape seed proanthocyanidin extract (GSPE) to prevent acetaminophen (AAP)-induced nephrotoxicity, amiodarone (AMI)-induced lung toxicity, and doxorubicin (DOX)-induced cardiotoxicity in mice. Experimental design consisted of four groups: control (vehicle alone), GSPE alone, drug alone and GSPE+drug. For the cytoprotection study, animals were orally gavaged 100 mg/Kg GSPE for 7-10 days followed by i.p. injections of organ specific three drugs (AAP: 500 mg/Kg for 24 h; AMI: 50 mg/Kg/day for four days; DOX: 20 mg/Kg for 48 h). Parameters of study included analysis of serum chemistry (ALT, BUN and CPK), and orderly fragmentation of genomic DNA (both endonuclease-dependent and independent) in addition to microscopic evaluation of damage and/or protection in corresponding PAS stained tissues. Results indicate that GSPE preexposure prior to AAP, AMI and DOX, provided near complete protection in terms of serum chemistry changes (ALT, BUN and CPK), and significantly reduced DNA fragmentation. Histopathological examination of kidney, heart and lung sections revealed moderate to massive tissue damage with a variety of morphological aberrations by all the three drugs in the absence of GSPE preexposure than in its presence. GSPE+drug exposed tissues exhibited minor residual damage or near total recovery. Additionally, histopathological alterations mirrored both serum chemistry changes and the pattern of DNA fragmentation. Interestingly, all the drugs, such as, AAP, AMI and DOX induced apoptotic death in addition to necrosis in the respective organs which was very effectively blocked by GSPE. Since AAP, AMI and DOX undergo biotransformation and are known to produce damaging radicals in vivo, the protection by GSPE may be linked to both inhibition of metabolism and/or detoxification of cytotoxic radicals. In addition, its' presumed contribution to DNA repair may be another important attribute, which played a role in the chemoprevention process. Additionally, this may have been the first report on AMI-induced apoptotic death in the lung tissue. Taken together, these events undoubtedly establish GSPE's abundant bioavailability, and the power to defend multiple target organs from toxic assaults induced by structurally diverse and functionally different entities in vivo.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge