Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Proteome Research 2010-Oct

Integrated proteomic and cytological study of rice endosperms at the storage phase.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Sheng Bao Xu
Hua Tao Yu
Long Feng Yan
Tai Wang

キーワード

概要

The endosperm at the storage phase undergoes a series of coordinated cellular and metabolic events, including starchy endosperm cell death, starch synthesis, and starch granule packaging, which leads to efficient accumulation of starch. However, the mechanism underlying the interconnections remains unknown. We used integrated proteomic and cytological approaches to probe the interconnections in rice (Oryza sativa) endosperm at the storage phase from 12 to 18 days after flowering (DAF). Starch granule packaging was completed first in the inner part of endosperm at 15 DAF and spread to almost the entire endosperm at 18 DAF. Programmed starchy endosperm cell death occurred after the starch granule packaging. Endogenous H(2)O(2) was detectable in the inner part of endosperm at 12 DAF and the region beyond the inner part at 15 DAF, with an H(2)O(2) burst at 15 DAF. Proteomics analysis with 2-D fluorescent difference gel electrophoresis and matrix-assisted laser-desorption ionization time-of-flight/time-of-flight mass spectrometry revealed 317 proteins, including almost all known antioxidants, differentially expressed throughout the 3 stages of the developmental phase. More than two-thirds of the 317 proteins were potential thioredoxin targets, with a preferential skew toward central carbon metabolism, alcoholic fermentation, starch metabolism, amino acid metabolism, and protein synthesis or folding. These proteins implicated in starch synthesis and gluconeogenesis were upregulated, whereas those involved in anabolism of biomacromolecules such as proteins, lipids, and cell wall components were downregulated, with upregulated expression of proteins involved in catabolism of these biomacromolecules, which suggests remobilization of nutrients for starch synthesis. These data suggested important roles of the H(2)O(2)-antioxidant interface in coordinating starch accumulation, programmed cell death of starchy endosperm, and remobilization of nutrients during the cell death.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge