Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Biology 2018-May

Investigating the mechanisms underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora under metal stress.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
K Paredes-Páliz
R Rodríguez-Vázquez
B Duarte
M A Caviedes
E Mateos-Naranjo
S Redondo-Gómez
M I Caçador
I D Rodríguez-Llorente
E Pajuelo

キーワード

概要

Pollution of coasts by toxic metals and metalloids is a worldwide problem for which phytoremediation using halophytes and associated microbiomes is becoming relevant. Metal(loid) excess is a constraint for plant establishment and development, and plant growth promoting rhizobacteria (PGPR) mitigate plant stress under these conditions. However, mechanisms underlying this effect remain elusive. The effect of toxic metal(loid)s on activity and gene expression of ROS-scavenging enzymes in roots of the halophyte Spartina densiflora grown on real polluted sediments in a greenhouse experiment was investigated. Sediments of the metal-polluted joint estuary of Tinto and Odiel rivers and control, unpollutred samples from the Piedras estuary were collected and submitted to ICP-OES. Seeds of S. densiflora were collected from the polluted Odiel marshes and grown in polluted and unpolluted sediments. Rhizophere biofilm-forming bacteria were selected based on metal tolerance and inoculated to S. densiflora and grown for 4 months. Fresh or frozen harvested plants were used for enzyme assays and gene expression studies, respectively. Metal excess induced SOD (five-fold increase), whereas CAT and ascorbate peroxidase displayed minor induction (twofold). A twofold increase of TBARs indicated membrane damage. Our results showed that metal-resistant PGPR (P. agglomerans RSO6 and RSO7 and B. aryabhattai RSO25) contributed to alleviate metal stress, as deduced from lower levels of all antioxidant enzymes to levels below those of non-exposed plants. The oxidative stress index (OSI) decreased between 50 and 75% upon inoculation. The results also evidenced the important role of PAL, involved in secondary metabolism and/or lignin synthesis, as a pathway for metal stress management in this halophyte upon inoculation with appropriate PGPR, since the different inoculation treatments enhanced PAL expression between 3.75- and five-fold. Our data confirm, at the molecular level, the role of PGPR in alleviating metal stress in S. densiflora and evidence the difficulty of working with halophytes for which little genetic information is available.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge