Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemico-Biological Interactions 2001-May

Metabolic, idiosyncratic toxicity of drugs: overview of the hepatic toxicity induced by the anxiolytic, panadiplon.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
R G Ulrich
J A Bacon
E P Brass
C T Cramer
D K Petrella
E L Sun

キーワード

概要

Preclinical drug safety evaluation studies, typically conducted in two or more animal species, reveal and define dose-dependent toxicities and undesirable effects related to pharmacological mechanism of action. Idiosyncratic toxic responses are often not detected during this phase in development due to their relative rarity in incidence and differences in species sensitivity. This paper reviews and discusses the metabolic idiosyncratic toxicity and species differences observed for the experimental non-benzodiazepine anxiolytic, panadiplon. This compound produced evidence of hepatic toxicity in Phase 1 clinical trial volunteers that was not predicted by rat, dog or monkey preclinical studies. However, subsequent studies in Dutch-belted rabbits revealed a hepatic toxic syndrome consistent with a Reye's Syndrome-like idiosyncratic response. Investigations into the mechanism of toxicity using rabbits and cultured hepatocytes from several species, including human, provided a sketch of the complex pathway required to produce hepatic injury. This pathway includes drug metabolism to a carboxylic acid metabolite (cyclopropane carboxylic acid), inhibition of mitochondrial fatty acid beta-oxidation, and effects on intermediary metabolism including depletion of glycogen and disruption of glucose homeostasis. We also provide evidence suggesting that the carboxylic acid metabolite decreases the availability of liver CoA and carnitine secondary to the formation of unusual acyl derivatives. Hepatic toxicity could be ameliorated by administration of carnitine, and to a lesser extent by pantothenate. These hepatocellular pathway defects, though not directly resulting in cell death, rendered hepatocytes sensitive to secondary stress, which subsequently produced apoptosis and hepatocellular necrosis. Not all rabbits showed evidence of hepatic toxicity, suggesting that individual or species differences in any step along this pathway may account for idiosyncratic responses. These differences may be roughly applied to other metabolic idiosyncratic hepatotoxic responses and include variations in drug metabolism, effects on mitochondrial function, nutritional status, and health or underlying disease.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge