Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analytica Chimica Acta 2012-Dec

Metabolic studies of the Amaryllidaceous alkaloids galantamine and lycorine based on electrochemical simulation in addition to in vivo and in vitro models.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Sandra Jahn
Bettina Seiwert
Sascha Kretzing
Getu Abraham
Ralf Regenthal
Uwe Karst

キーワード

概要

Alkaloids from the plant family of Amaryllidaceae, such as galantamine (GAL) and lycorine (LYC), are known to exhibit numerous promising biological and pharmacological activities like antibacterial, antiviral or anti-inflammatory effects. Nonetheless, studies on the biotransformation pathway are rare for this substance class, unless approval for use as medication exists. While GAL has become a prescription drug used to alleviate and delay the symptoms of Alzheimer's disease, LYC exhibits potential antitumor properties. However, it has also been linked to toxic effects resulting in nausea and emesis. Whereas there are few publications available describing the metabolic pathway of GAL in animals and humans, the metabolism of LYC is unknown. Therefore, this study is concerned with the investigation of the oxidative metabolism of GAL and LYC, which was achieved by means of three different approaches: electrochemical (EC) simulation coupled on-line to liquid chromatography (LC) with electrospray mass spectrometric (ESI-MS) detection was applied in addition to in vivo experiments in beagle dog analyzing plasma (BP) and in vitro incubations with rat liver microsomes (RLM). This way, it should be investigated if electrochemistry can be used to predict the oxidative metabolism of alkaloids. For GAL, the EC model was capable of predicting most metabolites observed during microsomal and plasma studies, including N-demethylated, dehydrogenated and oxygenated products or a combination of these. LYC was found to be metabolized far less than GAL in the animal-based approaches, but several EC oxidation products were generated. Some principal metabolic routes could successfully be correlated for this alkaloid as well, comprising dehydrogenation, dehydration to ungeremine and oxygenation reactions.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge