Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Naunyn-Schmiedeberg's Archives of Pharmacology 1996-Jun

Nonexocytotic noradrenaline release induced by pharmacological agents or anoxia in human cardiac tissue.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
T Kurz
G Richardt
M Seyfarth
A Schömig

キーワード

概要

In acute myocardial ischemia, noradrenaline is released locally from sympathetic varicosities by a Ca(2+)-independent nonexocytotic release mechanism that is effectively suppressed by inhibitors of the neuronal noradrenaline carrier (uptake1). The purpose of the present study was to elucidate the significance of free axoplasmic amine concentration and disturbed neuronal sodium homeostasis for nonexocytotic noradrenaline release in the human heart by comparing the release induced by anoxia with that induced by reserpine, tyramine, or veratridine. The overflow of endogenous noradrenaline and dihydroxyphenylethyleneglycol was assessed in human atrial tissue incubated in calcium-free Krebs-Henseleit-solution to prevent interferences by exocytotic release. The overflow of dihydroxyphenylethyleneglycol served as indicator of the free axoplasmic noradrenaline concentration. When vesicular uptake was blocked by the reserpine-like agent Ro 4-1284, high dihydroxyphenylethyleneglycol overflow was observed without concomitant noradrenaline overflow. If, however, Ro 4-1284 was combined with sodium pump inhibition (by omission of extracellular potassium) or with alteration of the transmembrane sodium gradient (by lowering the extracellular sodium concentration), both dihydroxyphenylethyleneglycol and noradrenaline were released. The indirectly acting sympathomimetic tyramine induced a marked increase in noradrenaline overflow which was accompanied by overflow of high amounts of dihydroxyphenylethyleneglycol, indicating interference of the drug with both vesicular catecholamine transport and amine transport via uptake1. Likewise, veratridine induced an overflow of noradrenaline (which was prevented by blockade of uptake1) and dihydroxyphenylethyleneglycol indicating a reserpine-like action of the drug. A disturbed energy status of the sympathetic neuron induced by cyanide intoxication or anoxia caused noradrenaline overflow which was suppressed by uptake1 blockade. Blockade of sodium channels by tetrodotoxin effectively reduced noradrenaline overflow during cyanide intoxication but not during anoxia. Anoxia-induced noradrenaline release, however, was markedly suppressed by inhibition of Na+/H+ exchange with ethylisopropylamiloride, indicating the Na+/H+ exchange as the predominant pathway for sodium entry into the sympathetic neuron during anoxia. The results demonstrate that disturbed neuronal sodium homoeostasis and impaired vesicular storage function are critical conditions, causing nonexocytotic noradrenaline release in anoxic human cardiac tissue.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge