Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2013-Jun

Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Linda Gruffman
Sari Palmroth
Torgny Näsholm

キーワード

概要

In boreal forests, seedling establishment is limited by various factors including soil nitrogen (N) availability. Seedlings may absorb N from soil in a variety of inorganic and organic forms; however, the energy and thus carbohydrate requirements for uptake and assimilation of N vary with N source. We studied the importance of current photoassimilates for the acquisition and allocation of different N sources by Scots pine (Pinus sylvestris (L.)) seedlings. Girdling was used as a tool to impair phloem transport of photoassimilates, and hence gradually deprive roots of carbohydrates. Seedlings were cultivated in a greenhouse on equimolar N concentrations of one of the N sources-arginine, ammonium or nitrate-and then girdled prior to a pulse-chase uptake experiment with isotopically labeled N sources. Girdling proved to be efficient in decreasing levels of soluble sugars and starch in the roots. Uptake rate of arginine N was highest, intermediate for ammonium N and lowest for nitrate N. Moreover, the uptake of arginine N was unaffected by girdling, while the uptake of the two inorganic N sources decreased to 45-56% of the ungirdled controls. In arginine-treated seedlings, 95-96% of the acquired arginine N resided in the roots, whereas a significant shift in the N distribution toward the shoot was evident in girdled seedlings treated with inorganic N. This spatial shift was especially pronounced in nitrate-treated seedlings suggesting that the reduction and following incorporation into roots was limited by the availability of current photoassimilates. These results suggest that there are energetic benefits for seedlings to utilize organic N sources, particularly under circumstances where carbohydrate supply is limited. Hence, these putative benefits might be of importance for the survival and growth of seedlings when carbohydrate reserves are depleted in early growing season, or in light-limited environments, such as those sustained by continuous cover forestry systems.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge