Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cell Biochemistry and Function 2014-Oct

Oxidative stress and cannabinoid receptor expression in type-2 diabetic rat pancreas following treatment with Δ⁹-THC.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Zeynep Mine Coskun
Sema Bolkent

キーワード

概要

The objectives of study were (a) to determine alteration of feeding, glucose level and oxidative stress and (b) to investigate expression and localization of cannabinoid receptors in type-2 diabetic rat pancreas treated with Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Rats were randomly divided into four groups: control, Δ(9)-THC, diabetes and diabetes + Δ(9)-THC groups. Diabetic rats were treated with a single dose of nicotinamide (85 mg/kg) 15 min before injection of streptozotocin (65 mg/kg). Δ(9)-THC was administered intraperitoneally at 3 mg/kg/day for 7 days. Body weights and blood glucose level of rats in all groups were measured on days 0, 7, 14 and 21. On day 15 after the Δ(9)-THC injections, pancreatic tissues were removed. Blood glucose levels and body weights of diabetic rats treated with Δ(9)-THC did not show statistically significant changes when compared with the diabetic animals on days 7, 14 and 21. Treatment with Δ(9)-THC significantly increased pancreas glutathione levels, enzyme activities of superoxide dismutase and catalase in diabetes compared with non-treatment diabetes group. The cannabinoid 1 receptor was found in islets, whereas the cannabinoid 2 receptor was found in pancreatic ducts. Their localization in cells was both nuclear and cytoplasmic. We can suggest that Δ(9) -THC may be an important agent for the treatment of oxidative damages induced by diabetes. However, it must be supported with anti-hyperglycaemic agents. Furthermore, the present study for the first time emphasizes that Δ(9)-THC may improve pancreatic cells via cannabinoid receptors in diabetes. The aim of present study was to elucidate the effects of Δ(9)-THC, a natural cannabinoid receptor agonist, on the expression and localization of cannabinoid receptors, and oxidative stress statue in type-2 diabetic rat pancreas. Results demonstrate that the cannabinoid receptors are presented in both Langerhans islets and duct regions. The curative effects of Δ(9)-THC can be occurred via activation of cannabinoid receptors in diabetic rat pancreas. Moreover, it may provide a protective effect against oxidative damage induced by diabetes. Thus, it is suggested that Δ(9)-THC can be a candidate for therapeutic alternatives of diabetes symptoms.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge