Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Pharmacology 1988-May

Pyrethroid insecticides and DDT modify alkaloid-dependent sodium channel activation and its enhancement by sea anemone toxin.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
J R Bloomquist
D M Soderlund

キーワード

概要

The effects of saturating concentrations of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] and the pyrethroid insecticides cismethrin and deltamethrin on alkaloid-dependent activation of the voltage-sensitive sodium channel were studied using measurements of 22Na+ uptake into mouse brain synaptosomes. In survey experiments, these compounds enhanced sodium uptake stimulated by veratridine and batrachotoxin, but inhibited uptake stimulated by aconitine. Concentration response curves for aconitine run in the absence and presence of 10 microM cismethrin demonstrated that the inhibition was noncompetitive. This unanticipated inhibitory effect of insecticides on aconitine-dependent sodium uptake suggests a possible overlap or negative allosteric coupling between the binding sites for insecticides and aconitine and reveals unique characteristics of the action of aconitine that are not shared by veratridine and batrachotoxin. More detailed studies of the effects of insecticides on veratridine- or batrachotoxin-stimulated uptake found small insecticide-dependent increases in the potency of these activators. In addition to this effect, DDT and deltamethrin also enhanced maximal uptake stimulated by veratridine. Possible mechanisms underlying these effects of insecticides on alkaloid-dependent uptake are discussed in light of a qualitative model formulated from these results and previous biochemical and electrophysiological studies. Additional experiments were designed to assess the interactions of insecticides and toxin II of the sea anemone Anemonia sulcata (ATX II) as modifiers of alkaloid-dependent uptake. DDT and ATX II acted synergistically to increase uptake stimulated by veratridine. Moreover, DDT shifted the potency of ATX II for enhancing veratridine-dependent uptake to 5-fold lower concentrations. In contrast, DDT and subsaturating concentrations of ATX II acted independently in their enhancement of sodium channel activation by batrachotoxin. Mutually exclusive effects on veratridine-dependent uptake were observed when cismethrin was co-applied with ATX II. However, independent effects of cismethrin and ATX II were found with aconitine-modified channels, in that cismethrin was able to inhibit ATX II-enhanced aconitine-dependent sodium flux. Thus, the interactions between insecticides and ATX II as modifiers of alkaloid-dependent uptake are complex and depend on the insecticide-activator combination under study.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge