Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Xenobiotica 2007-Apr

Role of ATP-binding cassette drug transporters in the intestinal absorption of tanshinone IIB, one of the major active diterpenoids from the root of Salvia miltiorrhiza.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
X-Y Yu
Z-W Zhou
S-G Lin
X Chen
X-Q Yu
J Liang
W Duan
J-Y Wen
X-T Li
S-F Zhou

キーワード

概要

There is an increasing use of herbal medicines worldwide, and the extracts from the root of Salvia miltiorrhiza are widely used in the treatment of angina and stroke. In this study, we investigated the mechanism for the intestinal absorption of tanshinone IIB (TSB), a major constituent of S. miltiorrhiza. The oral bioavailability of TSB was about 3% in rats with less proportional increase in its maximum plasma concentration (C(max)) and area under the plasma concentration-time curve (AUC) with increasing dosage. The time to C(max) (T(max)) was prolonged at higher oral dosage. In a single pass rat intestinal perfusion model, the permeability coefficients (P(app)) based on TSB disappearance from the lumen (P(lumen)) were 6.2- to 7.2-fold higher (p < 0.01) than those based on drug appearance in mesenteric venous blood (P(blood)). The uptake and efflux of TSB in Caco-2 cells were also significantly altered in the presence of an inhibitor for P-glycoprotein (PgP) or for multi-drug resistance associated protein (MRP1/2). TSB transport from the apical (AP) to basolateral (BL) side in Caco-2 monolayers was 3.3- to 5.7-fold lower than that from BL to AP side, but this polarized transport was attenuated by co-incubation of PgP or MRP1/2 inhibitors. The P(app) values of TSB in the BL-AP direction were significantly higher in MDCKII cells over-expressing MDR1 or MRP1, but not in cells over-expressing MRP2-5, as compared with the wild-type cells. The plasma AUC(0-24hr) in mdr1a and mrp1 gene-deficient mice was 10.2- to 1.7-fold higher than that in the wild-type mice. Furthermore, TSB significantly inhibited the uptake of digoxin and vinblastine in membrane vesicles containing PgP or MRP1. TSB also moderately stimulated PgP ATPase activity. Taken collectively, our findings indicate that TSB is a substrate for PgP and MRP1 and that drug resistance to TSB therapy and drug interactions may occur through PgP and MRP1 modulation.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge