Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Medicine Reports 2017-Dec

SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Cong Qian
Jianxiang Jin
Jingyin Chen
Jianru Li
Xiaobo Yu
Hangbo Mo
Gao Chen

キーワード

概要

Early brain injury is considered to be a major risk that is related to the prognosis of subarachnoid hemorrhage (SAH). In SAH model rats, brain edema and apoptosis have been closely related with death rate and neurological function. Sirtuin 1 (SIRT1) was reported to be involved in apoptosis in cerebral ischemia and brain tumor formation through p53 deacetylation. The present study aimed to evaluate the role of SIRT1 in a rat endovascular perforation model of SAH. The SIRT1 activator resveratrol (RES) was administered 48 h prior to SAH induction and the SIRT1 inhibitor Sirtinol (SIR) was used to reverse the effects of RES on SIRT1 expression. Mortality rate, neurological function and brain water content were measured 24 h post‑SAH induction. Proteins associated with the blood brain barrier (BBB), apoptosis and SIRT1 in the cortex, such as zona occludens 1 (ZO‑1), occludin, claudin‑5, SIRT1, p53 and cleaved caspase3 were investigated. mRNA expression of the p53 downstream molecules including Bcl‑associated X protein, P53 upregulated modulator of apoptosis, Noxa and BH3 interacting‑domain death agonist were also investigated. Neuronal apoptosis was also investigated by immunofluorescence. RES pretreatment reduced the mortality rate and improved neurological function, which was consistent with reduced brain water content and neuronal apoptosis; these effects were partially reversed by co‑treatment with SIR. SIRT1 may reduce the brain water content by improvement of dysfunctional BBB permeability, and protein analysis revealed that both ZO‑1, occludin and claudin‑5 may be involved, and these effects were reversed by SIRT1 inhibition. SIRT1 may also affect apoptosis post‑SAH through p53 deacetylation, and the analysis of p53 related downstream pro‑apoptotic molecules supported this hypothesis. Localization of neuron specific apoptosis revealed that SIRT1 may regulate neuronal apoptosis following SAH. SIRT1 may also ease brain edema and neuronal protection through BBB improvement and p53 deacetylation. SIRT1 activators such as RES may have the potential to improve the prognosis of patients with SAH and clinical research should be investigated further.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge