Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2018-Dec

Sediment phosphorus speciation and retention process affected by invasion time of Spartina alterniflora in a subtropical coastal wetland of China.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Jiabing Li
Yueting Lai
Rongrong Xie
Xiaoyan Ding
Chunshan Wu

キーワード

概要

In coastal wetland ecosystems, most phosphorus (P) accumulates in the sediments and becomes a major pollutant causing eutrophication by recycling to the water column in estuary areas, especially exotic plant invasions will change the nutrient cycling. In this study, a large wetland invaded by exotic species Spartina alterniflora for over 15 years was selected to study the sediment P fractionation and its retention for different plant invasion periods. The samples were collected from east to west in September and the sediment P was fractionated into total P (TP), inorganic P (IP), iron/aluminum-bound P (Fe/Al-P), calcium-bound P (Ca-P), and organic P (OP). Additionally, the effect of the invasion period on the wetland P fractionation based on space-time reciprocal principle was investigated. For different S. alterniflora invasion periods, the average TP concentration was 675.37 mg kg-1 with a range of 160.33-1071 mg kg-1. The IP concentration was in the range of 107.33-813.33 mg kg-1 (accounting for 54.4-79.5% of TP), of which Fe/Al-P and Ca-P represented up to 99.4%. In addition, the P retention (RP) was within 41.67-329.67 mg kg-1. We also found that TP, IP, Fe/Al-P, Ca-P, OP, and RP in sediments were negatively correlated with pH (p < 0.05), and were also significantly positively correlated (p < 0.01) with water content and electrical conductivity. There were positive correlations between the various forms of P in the sediments (p < 0.01). However, the most important finding was that invasion time of S. alterniflora had a direct effect on the P speciation and three stages were determined. In the first stage, S. alterniflora mainly consumed the OP of the sediment. In the second stage, S. alterniflora showed great vitality and biological immobilization led to the transforming of IP to OP. In the third stage, all P fractions greatly decreased to values even lower than for the bare beach which indicated that S. alterniflora growth had begun to degenerate. These three stages well explained the P seemingly contradictory increases and decreases apparent in previous studies and provide important information for understanding the effect of S. alterniflora invasion.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge