Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Helminthology 1988-Sep

Surface carbohydrate changes on Onchocerca lienalis larvae as they develop from microfilariae to the infective third-stage in Simulium ornatum.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
P J Ham
A J Smail
B K Groeger

キーワード

概要

Use was made of seven FITC labelled lectins as tools to investigate the surface of Onchocerca lienalis larvae as they develop through to the infective third-stage in a natural vector, Simulium ornatum. The lectins were derived from Canavalia ensiformis (Con A), Lens culinaris (lentil), Triticum vulgaris (wheat germ), Arachis hypogaea (peanut), Helix pomatia, Phaseolus vulgaris (kidney bean) and Tetragonolobus purpureus (asparagus pea). Between 70 and 100 living parasites were examined for each developmental stage; i.e. skin microfilariae, late first-stages, second-stages, preinfective third-stages and infective third-stages isolated from the mouth parts of the flies. None of the lectins used bound to the surface of the microfilariae. However, progressive binding to the cuticle of the first- and second-stages was observed using Con. A, lentil lectin and wheat germ agglutinin (WGA). Following moulting to the third-stage, binding of these three lectins declined. Furthermore, as these lectins decreased, peanut and Helix pomatia lectins progressively increased in their binding, despite the fact that they showed little or no binding to the first- and second-stages; stages at which Con A, lentil and WGA were at their maximum. Asparagus pea and kidney bean lectins failed completely to bind to any of the larvae examined. Carbohydrate inhibition tests showed that the lectin was indeed binding specifically to glycoconjugates on the parasite surface. WGA binding was not inhibited by prior incubation with N-acetyl-D-glucosamine, even at high concentrations, but neuraminic acid did completely inhibit its binding. Judging from the patterns of binding on the nematodes themselves, the carbohydrates may not be vector in origin, but derive from the worms. The lectin specificities indicate that initially mannose/glucose type derivatives are present on the surface. Following moulting to the third-stage these are progressively replaced, or overlaid with galactosamine type derivatives, also present on the infective third-stage as it enters the bovine host. The availability of these surface glycoconjugates to attack mediated by natural insect lectins may be of importance in the parasite regulatory mechanisms of the blackfly. Variability in these surface carbohydrates, and in the response to them could well be a contributing factor in the cytospecific variation in S. damnosum susceptibility to geographical variants of O. volvulus.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge