Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Neurologica Scandinavica 1999-Jul

Vestibular evoked blood flow response in the basilar artery.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
J G Heckmann
S Leis
M Mück-Weymann
M J Hilz
B Neundörfer

キーワード

概要

OBJECTIVE

Monitoring of the basilar artery (BA) is difficult and has been sparsely performed. The aim of this study was to present physiological data of functional transcranial Doppler sonography (TCD) of the BA during caloric vestibular stimulation in healthy volunteers.

METHODS

TCD of the BA was performed in 26 healthy volunteers (14 women, 12 men, age 25.1+/-3 years) during caloric vestibular stimulation. Vertigo was documented using electronystagmography (ENG) and a subjective vertigo scale ranging from 0 to 10 points. Simultaneously, capnogpraphy was performed.

RESULTS

All subjects experienced vertigo, nausea and oszillopsia during vestibular irrigation. The average subjective vertigo was for a period of 106 s (+/-65.4); the average subjective estimated degree of vertigo was 6.7 points (+/-1.5). In all subjects, ENG demonstrated horizontal nystagm to the left non-irrigated side. In 14 subjects the subjective vertigo was rated by the individuals as extreme (point score > or =7) and in 12 subjects as low (point score <7). Mean flow velocity (MFV) in the BA increased significantly during vestibular irrigation, being more prominent in the initial irrigation and vertigo phase (5.8+/-5.9%, P<0.05) than in the second vertigo phase (2.2+/-8.8%, P<0.05). The calculated pulsatility index (PI), which indicates the condition of the small resistance vessels, decreased significantly (-4.9+/-8.1%; 4.3+/-8.9%, P<0.05) during both phases of vestibular activation. End tidal pCO2 did not change significantly (constant 5.4+/-0.4 Vol%), but respiration frequency was significantly increased during vestibular stimulation (12.3+/-3.8 min(-1) to 16.4+/-5.3 min(-1) and 16.3+/-4.8 min(-1), P<0.05) probably as a vegetative sign of vertigo. The observed MFV- and PI-changes were more prominent, although not quite significant, in the subgroup of subjects who experienced extreme subjective vertigo than in the subgroup who experienced low subjective vertigo.

CONCLUSIONS

These observations indicate that MFV increase in the posterior circulation is due to activation of the vestibulocerebellum. In addition, it is possible that the previously elaborated MFV increase in the MCA might contribute to MFV increase in the BA via the posterior communicating artery. The difference in the 2 subgroups (extreme vertigo vs. low vertigo) may reflect the great variety of anatomical and physiological conditions of the peripheral vestibular organ, the brainstem anatomy and the corresponding blood supply. For clinical purposes this TCD-test may contribute to the investigation of the vasomotor reserve of the posterior circulation, e.g. in patients with vertebrobasilar ischemia, bilateral vestibular loss or local neurodegenerative disease.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge