Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials Science and Engineering C 2020-Jun

Facile coconut inflorescence sap mediated synthesis of silver nanoparticles and its diverse antimicrobial and cytotoxic properties.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Rajesh K
Muralikrishna S
Swapna Nair
Kumar Krishna
Subrahmanya M
Sonu P
Subaharan K
Sweta H
Prasad Keshava
Chandran Neeli

キーワード

概要

Green synthesis of nanoparticles (NPs) involves the use of diverse extracts of biological origin as substrates to synthesize NPs and can overcome the hazards associated with chemical methods. Coconut inflorescence sap, which is unfermented phloem sap obtained by tapping of coconut inflorescence, is a rich source of sugars and secondary metabolites. In this study, coconut inflorescence sap was used to synthesize silver NPs (AgNPs). We have initially undertaken metabolomic profiling of coconut inflorescence sap from West Coast Tall cultivar to delineate its individual components. It was found to comprise of 64% secondary metabolites, 9% sugars, 12% lipids/fats and 9% peptides in positive mode, whereas in the negative mode, it was 33, 20, 9 and 11%, respectively. The concentration of silver nitrate, inflorescence sap and incubation temperature for the synthesis of AgNPs were optimized. Incubating the reaction mixture at 40 °C was found to enhance AgNP synthesis. The AgNPs synthesized were characterized using UV-visible (UV-Vis) spectrophotometry, X-Ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Transmission Electron Microscopy (TEM). The particles were crystalline in nature and the bulk of the particles were spherical with smooth (thin) shell and poly-dispersed with a diameter ranging from 10 nm to 30 nm. Antimicrobial property of AgNPs was tested in tissue culture of arecanut (Areca catechu L.) where bacterial contamination (Bacillus pumilus) was a frequent occurrence. A significant reduction in the contamination was observed when plantlets were treated with aqueous solutions of AgNPs. Notably, treatment with AgNPs did not affect the growth and development of the arecanut plantlets. Antimicrobial properties of AgNPs synthesized from inflorescence sap were also evaluated in human pathogenic bacteria viz., Escherichia coli ATCC 25922; Salmonella Typhimurium ATCC 14028 and Vibrio parahaemolyticus AQ4037. The antibacterial action was confirmed by determining the production of reactive oxygen species (ROS) and protein leakage studies. Cytotoxicity of AgNPs was quantified in HeLa cells. The viability (%) of HeLa cells declined significantly at 10 mg L-1 concentration of AgNP and complete mortality was observed at a concentration of 60 mg L-1. The study concludes that unfermented inflorescence sap, with above neutral pH, serves as an excellent reducing agent to synthesize AgNPs from Ag+.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge