Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cinnamaldehyde/hypoxia

リンクがクリップボードに保存されます
記事臨床試験特許
9 結果
Tumor hypoxia is positively correlated with tumor aggressiveness and hence is a negative prognostic factor in cancer. As normal cells usually do not experience such low oxygen levels, hypoxic cell signaling has attracted significant attention for the development of tumor-selective treatment

Research on tumorigenicity of cinnamaldehyde in melanoma cell lines and its mechanism.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Melanoma is a highly malignant tumor originating from melanocytes. This disease is characterized by inconspicuous onset, high malignancy, and poor prognosis. The aim of this study is to explore the effect of cinnamaldehyde on melanoma tumorigenicity and its mechanism. Melanoma cells were

Cinnamaldehyde protects against rat intestinal ischemia/reperfusion injuries by synergistic inhibition of NF-κB and p53.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Our preliminary study shows that cinnamaldehyde (CA) could protect against intestinal ischemia/reperfusion (I/R) injuries, in which p53 and NF-κB p65 play a synergistic role. In this study, we conducted in vivo and in vitro experiments to verify this proposal. SD rats were pretreated with CA (10 or
One tough question induced by the hypoxia in cancer tissue is resistance to anticancer drugs basing on the reactive oxygen species (ROS) mechanism. Furthermore, the hypoxic regions locate in the center of tumor where tumor cells are easily residual and survival due to the poor drug-delivery
Apoptosis, overload Ca2+ entry and oxidative stress are induced in neurons by hypoxia. Drug-resistant cancer cells are killed by hypoxic conditions. α-Lipoic acid (ALA) has antioxidant and pro-oxidant functions. The TRPA1 channel is activated by oxidative stress and pro-oxidant ALA may
Oxaliplatin has been widely applied in clinical tumor chemotherapy, the treatment failure of which mainly blames on low susceptibility resulted from intrinsic or acquired drug resistance in tumor cells. Microenvironmental hypoxia is one of the important pathological features of solid tumors, which

Hydrogen sulfide activates TRPA1 and releases 5-HT from epithelioid cells of the chicken thoracic aorta.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Epithelioid cells in the chicken thoracic aorta are chemoreceptor cells that release 5-HT in response to hypoxia. It is likely that these cells play a role in chemoreception similar to that of glomus cells in the carotid bodies of mammals. Recently, H2S was reported to be a key mediator of carotid

Neuroprotective effects of TRPA1 channels in the cerebral endothelium following ischemic stroke.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
Hypoxia and ischemia are linked to oxidative stress, which can activate the oxidant-sensitive transient receptor potential ankyrin 1 (TRPA1) channel in cerebral artery endothelial cells, leading to vasodilation. We hypothesized that TRPA1 channels in endothelial cells are activated by
Here, antitumor mechanism of cinnamaldehyde derivative CB-PIC was elucidated in human SW620 colon cancer cells. CB-PIC significantly exerted cytotoxicity, increased sub-G1 accumulation, and cleaved PARP with apoptotic features, while it enhanced the phosphorylation of AMPK alpha and ACC as well as
Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge