Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BioFactors 2019-May

The inhibition of hypoxia-induced angiogenesis and metastasis by cinnamaldehyde is mediated by decreasing HIF-1α protein synthesis via PI3K/Akt pathway.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Kartick Patra
Samarjit Jana
Arnab Sarkar
Deba Mandal
Shamee Bhattacharjee

キーワード

概要

Tumor hypoxia is positively correlated with tumor aggressiveness and hence is a negative prognostic factor in cancer. As normal cells usually do not experience such low oxygen levels, hypoxic cell signaling has attracted significant attention for the development of tumor-selective treatment strategies. In response to hypoxia, the master transcriptional regulator, HIF-1α plays central role in cellular adaptation by transactivating several crucial downstream target genes, which are involved in angiogenesis, metastasis, and EMT. In this study, we investigated the effect of cinnamaldehyde (CA), the main active ingredient of Cinnamon cassia bark extract, on hypoxia-induced angiogenesis and metastasis. The study in vitro comprised two cell lines, viz, sarcoma 180 and B16F10 melanoma, which were further confirmed in their respective transplantable in vivo models. Results show that CA administration inhibited tumor angiogenesis, EMT, and metastasis. At the molecular level, this was accompanied by a reduction in VEGF secretion, VEGF receptor (FLK) phosphorylation, matrix metalloproteinase (MMP) expression, and activity as well as a reduction in the EMT-related factors TWIST and ZEB1. Next, we focused our study particularly on the modulation of HIF-1 α by CA, which revealed that CA decreased HIF-1 α protein level by inhibiting its synthesis without affecting its proteasomal degradation. Furthermore, the PI3/Akt/mTOR pathway, which plays an important role in HIF-1α transcription and translation, was also inhibited by CA both in vitro and in vivo. Thus, it can be concluded that CA decreased angiogenesis and metastasis in tumor cells by inhibiting HIF-1α protein accumulation probably by targeting the PI3/Akt/mTOR pathway. © 2019 BioFactors, 45(3):401-415, 2019.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge