Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2012-Dec

Application of microdialysis for elucidating the existing form of hyperoside in rat brain: comparison between intragastric and intraperitoneal administration.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Jian-ming Guo
Ping Lin
Jin-ao Duan
Er-xin Shang
Da-wei Qian
Yu-ping Tang

키워드

요약

BACKGROUND

Hypericum perforatum (St. John's wort) is an important anti-depressant herb used in clinic and commonly prescribed for mild depression. Hyperoside is one of the major components of H. perforatum and is also detected in many plant species such as Abelmoschus manihot, Black Currant, Rosa agrestis, Apocynum venetum and Nelumbo nucifera.

OBJECTIVE

As the hyperoside showed CNS (central nervous system) protective activity (e.g. anti-depressant-like effect), the possibility of hyperoside or its metabolites to reach CNS should be investigated. Moreover, the pharmacokinetics profile of hyperoside or its metabolites in rat brain should be studied for further elucidating the mechanism of hyperoside action on CNS.

METHODS

A simple method for simultaneous determination of unbound hyperoside and its metabolite 3'-O-methyl-hyperoside in rat brain was developed by using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) and microdialysis technique. This method was applied for pharmacokinetics study of hyperoside and 3'-O-methyl-hyperoside in rat brain after intragastric (i.g.) and intraperitoneally (i.p.) administration of hyperoside in vivo.

RESULTS

Results showed that neither hyperoside nor its metabolites were detected in rat brain after i.g. administration but both compounds could be detected after i.p. administration. Considering the activity of hyperoside through both i.g. and i.p. administration, our results imply that the active components of hyperoside in vivo might be different. Therefore, further studies are needed to identify the active components of hyperoside in vivo through these two different routes. Moreover, non-oral administration route (e.g., i.p.) should be further investigated and be explored to obtain higher bioavailability and better activity for hyperoside. Our results also showed that the real existing form of hyperoside in rat brain were hyperoside and its methylated metabolite with maximum concentration to be 63.78 ng/mL and 24.66 ng/mL after 20mg/kg i.p. administration, respectively. Therefore, a more reasonable concentration of hyperoside should be considered in in vitro assay to reflect the real situation of hyperoside concentration in vivo.

CONCLUSIONS

Due to the wide use of herbal remedies containing hyperoside, our investigation will contribute to further clarifying the action of this substance. Moreover, this method will be applied for clinical pharmacokinetics study of hyperoside and its metabolite as well as herbs that contain hyperoside.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge