Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Human Genetics 2019-May

Canine models of human amelogenesis imperfecta: identification of novel recessive ENAM and ACP4 variants.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Marjo Hytönen
Meharji Arumilli
Eva Sarkiala
Pekka Nieminen
Hannes Lohi

키워드

요약

Amelogenesis imperfecta (AI) refers to a genetically and clinically heterogeneous group of inherited disorders affecting the structure, composition, and quantity of tooth enamel. Both non-syndromic and syndromic forms of AI have been described and several genes affecting various aspects of the enamel physiology have been reported. Genetically modified murine models of various genes have provided insights into the complex regulation of proper amelogenesis. Non-syndromic AI occurs spontaneously also in dogs with known recessive variants in ENAM and SLC24A4 genes. Unlike rodents with a reduced dentition and continuously erupting incisors, canine models are valuable for human AI due to similarity in the dental anatomy including deciduous and permanent teeth. We have performed a series of clinical and genetic analyses to investigate AI in several breeds of dogs and describe here two novel recessive variants in the ENAM and ACP4 genes. A fully segregating missense variant (c.716C>T) in exon 8 of ENAM substitutes a well-conserved proline to leucine, p.(Pro239Leu), resulting in a clinical hypomineralization of teeth. A 1-bp insertion in ACP4 (c.1189dupG) is predicted to lead to a frameshift, p.(Ala397Glyfs), resulting in an abnormal C-terminal part of the protein, and hypoplastic AI. The ENAM variant was specific for Parson Russell Terriers with a carrier frequency of 9%. The ACP4 variant was found in two breeds, Akita and American Akita with a carrier frequency of 22%. These genetic findings establish novel canine models of human AI with a particular interest in the case of the ACP4-deficient model, since ACP4 physiology is poorly characterized in human AI. The affected dogs could also serve as preclinical models for novel treatments while the breeds would benefit from genetic tests devised here for veterinary diagnostics and breeding programs.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge