Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2006

Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Claudie Ricoult
Luis Orcaray Echeverria
Jean-Bernard Cliquet
Anis M Limami

키워드

요약

Four alanine aminotransferases (AlaATs) are expressed in Medicago truncatula. In adult plants, two genes encoding mitochondrial isoforms m-AlaAT and alanine-glyoxylate aminotransferase (AGT), catalysing, respectively, reversible reactions of alanine/oxoglutarate<==>glutamate/pyruvate and alanine/glyoxylate<==>glycine/pyruvate, were expressed in roots, stems, and leaves. A gene encoding a cytosolic (c-AlaAT) isoform, catalysing the same reaction as m-AlaAT, was expressed specifically in leaves, while a gene encoding an isoform involved in branched chain amino acid metabolism was expressed in stems and roots. In young seedlings, only m-AlaAT and AGT were expressed in embryo axes. In hypoxic embryo axes, the amounts of transcript and putative protein of m-AlaAT (EC 2.6.1.2) increased while those of AGT (EC 2.6.1.44) decreased and in vivo enzyme activities changed as revealed by [(15)N]alanine and [(15)N]glutamate labelling. Under hypoxia, m-AlaAT catalysed only alanine synthesis while glutamate synthesis using alanine as amino donor was inhibited. As a result, alanine accumulated as the major amino acid in hypoxic seedlings instead of asparagine, in agreement with the involvement of the fermentative AlaAT pathway in hypoxia tolerance. Regulation of m-AlaAT at both the transcriptional and post-translational levels allowed for an increase in gene expression and orientation of the activity of the product of its transcription towards alanine synthesis under hypoxia. Labelling experiments showed that glycine synthesis occurred at the expense of either alanine or glutamate as amino donor, indicating that a glutamate-glyoxylate aminotransferase was operating together with AGT in Medicago truncatula seedlings. Both enzymes seemed to be inhibited by hypoxia, resulting in a very low amount of glycine in hypoxic seedlings.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge