Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Biology 2016-Sep

Comparative effects of wild type Stenotrophomonas maltophilia and its indole acetic acid-deficient mutants on wheat.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
T U Hassan
A Bano

키워드

요약

The present investigation evaluated the role of Stenotrophomonas maltophilia and its IAA-deficient mutant on soil health and plant growth under salinity stress in the presence of tryptophan. In the first phase, S. maltophilia isolated from roots of the halo- phytic herb, Cenchrus ciliaris was used as bio-inoculant on wheat grown in saline sodic soil. A field experiment was conducted at Soil Salinity Research Institute during 2010-2011. Treatments included seed inoculation with S. maltophilia with or without tryptophan; uninoculated untreated plants were taken as control. An aqueous solution of tryptophan was added to rhizosphere soil at 1 μg l(_1) after seed germination. Inoculation with S. maltophilia significantly increased soil organic matter, enhanced (20-30%) availability of P, K, Ca and NO3 -N and decreased Na content and electrical conductivity of rhizosphere soil. Plant height, fresh weight, proline and phytohormone content of leaves were increased 30-40% over the control. Activities of superoxide dismutase (SOD) and peroxidase (POD) were 40-50% higher than control. Addition of tryptophan further augmented (10-15%) growth parameters, whereas NO3 -N, P, K and Ca content, proline content and SOD and POD increased 20-30%. In a second phase, indoleacetic acid (IAA)-deficient mutants of S. maltophilia were constructed and evaluated for conversion of tryptophan to IAA at the University of Calgary, Canada, during 2013-2014. About 1800 trans-conjugants were constructed that were unable to produce IAA in the presence of tryptophan. The results suggest that tryptophan assisted S. maltophilia in the amelioration of salt stress, and that IAA played positive role in induction of salt tolerance.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge