Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2019-Mar

Comprehensive analysis of phenotype, microstructure and global transcriptional profiling to unravel the effect of excess copper on the symbiosis between nitrogen-fixing bacteria and Medicago lupulina.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Minxia Chou
Yali Sun
Jieyu Yang
Yujie Wang
Yajuan Li
Guijie Yuan
Dehui Zhang
Jiamei Wang
Gehong Wei

키워드

요약

Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. However, knowledge of the molecular mechanisms, especially the microstructure and global transcriptional profiling, of the symbiosis process under heavy metal contamination is limited. In this study, a heavy metal-tolerant legume, Medicago lupulina, was treated with different concentrations of copper (Cu). The results showed that the early infection process was inhibited and the nodule ultrastructure was changed under 200 mg kg-1 Cu stress. Most infection threads (ITs) were prevented from entering the nodule cells, and few rhizobia were released into the host cells, in which thickening of the plant cell wall and IT wall was observed, demonstrating that rhizobial invasion was inhibited under Cu stress. RNA-seq analysis indicated that a strong shift in gene expression occurred (3257 differentially expressed genes, DEGs). The most pronounced effect was the upregulation of a set of 71 of 73 DEGs for nodule-specific cysteine-rich peptides, which have been shown to control the terminal differentiation of rhizobia in the nodules and to have antimicrobial activity. Various genes for metal transport, chelation binding and antioxidant defence were regulated. In particular, the DEGs for Cu trafficking and detoxification were induced during nodule formation. The DEGs for ethylene (ET) biosynthesis and signalling were also differentially expressed during nodulation, suggesting that the inhibition of nodulation by Cu occurred partially through ET signalling. Furthermore, the genes related to the cell wall were mostly upregulated and most likely involved in cell wall thickening. These findings provide an integrated understanding of the effects of Cu on legume nodule symbiosis at the molecular and phenotypic levels.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge