Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2015-Sep

Effects of CO2 enrichment and drought pretreatment on metabolite responses to water stress and subsequent rehydration using potato tubers from plants grown in sunlit chambers.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Jinyoung Yang
David H Fleisher
Richard C Sicher
Joonyup Kim
Virupax C Baligar
Vangimalla R Reddy

키워드

요약

Experiments were performed using naturally sunlit Soil-Plant-Atmosphere Research chambers that provided ambient or twice ambient CO2. Potato plants were grown in pots that were water sufficient (W), water insufficient for 12-18 days during both vegetative and tuber development stages (VR), or water insufficient solely during tuber development (R). In the ambient CO2 treatment, a total of 17 and 20 out of 31 tuber metabolites differed when comparing the W to the R and VR treatments, respectively. Hexoses, raffinose, mannitol, branched chain amino acids, phenylalanine and proline increased, although most organic acids remained unchanged or decreased in response to drought. Osmolytes, including glucose, branched chain amino acids and proline, remained elevated following 2 weeks of rehydration in both the ambient and elevated CO2 treatments, whereas fructose, raffinose, mannitol and some organic acids reverted to control levels. Failure of desiccated plant tissues to mobilize specific osmolytes after rehydration was unexpected and was likely because tubers function as terminal sinks. Tuber metabolite responses to single or double drought treatments were similar under the same CO2 levels but important differences were noted when CO2 level was varied. We also found that metabolite changes to water insufficiency and/or CO2 enrichment were very distinct between sink and source tissues, and total metabolite changes to stress were generally greater in leaflets than tubers.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge