Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2015

Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Christine Götz-Rösch
Tina Sieper
Agnes Fekete
Philippe Schmitt-Kopplin
Anton Hartmann
Peter Schröder

키워드

요약

Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants' pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to degrade AHLs to metabolites such as the hydroxy- or keto-form of the original compound.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge