Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2019-Jan

Mechanisms of bergenin treatment on chronic bronchitis analyzed by liquid chromatography-tandem mass spectrometry based on metabolomics.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Caijuan Zhang
Baosheng Zhao
Chi Zhang
Minyi Qiu
Shuangshuang
Xiaoyan Jin
Yuanyang Shao
Min Wang
Xueyong Wang

키워드

요약

With increasing air pollution, chronic bronchitis (CB) has become a major public health problem worldwide. Previous studies have shown beneficial effects of Bergenin (Ber) on chronic bronchitis. To facilitate understanding of the pathogenesis underlying CB as well as to elucidate the Ber therapeutic mechanism, it is crucial to confirm the rational biomarkers of CB and its treatment. This study aimed to investigate the preventive chronic bronchitis mechanism of Ber by applying a serum metabolomics strategy. In this study, 18 Sprague-Dawley rats were randomly divided into three groups,with six rats in each group. Rats from the CB and Ber groups were exposed to tobacco smoke for 1 hd-1 (1 h per day) for 28 days. Ber was administered orally to Ber rats 3 h after exposure every day, and the others were administered water. According to the morphometric analysis of the airway epithelium and the count of white blood cells in the bronchoalveolar lavage fluid, Ber suppressed the infiltration of inflammatory cells, inhibited the secretion of mucus, and reduced white blood cells in bronchoalveolar lavage fluid. The metabolic profiles of sera were analyzed by multivariate statistical analyses, including PCA, PLS-DA and OPLS-DA models, and revealed that the levels of thirteen metabolites were significantly changed and identified as potential biomarkers in the CB group and Ber group. The results suggested that the therapeutic mechanism of Ber may be related to the regulation of dysfunctions in glycerophospholipid, tryptophan, arginine and proline metabolism induced by CB, and changes in arachidonic acid metabolism.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge