Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurogastroenterology and Motility 2018-Oct

MicroRNA-200a Targets Cannabinoid Receptor 1 and Serotonin Transporter to Increase Visceral Hyperalgesia in Diarrhea-predominant Irritable Bowel Syndrome Rats.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Qiuke Hou
Yongquan Huang
Changrong Zhang
Shuilian Zhu
Peiwu Li
Xinlin Chen
Zhengkun Hou
Fengbin Liu

키워드

요약

UNASSIGNED

MicroRNAs (miRNAs) were reported to be responsible for intestinal permeability in diarrhea-predominant irritable bowel syndrome (IBS-D) rats in our previous study. However, whether and how miRNAs regulate visceral hypersensitivity in IBS-D remains largely unknown.

UNASSIGNED

We established the IBS-D rat model and evaluated it using the nociceptive visceral hypersensitivity test, myeloperoxidase activity assay, restraint stress-induced defecation, and electromyographic (EMG) activity. The distal colon was subjected to miRNA microarray analysis followed by isolation and culture of colonic epithelial cells (CECs). Bioinformatic analysis and further experiments, including dual luciferase assays, quantitative real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay, were used to detect the expression of miRNAs and how it regulates visceral hypersensitivity in IBS-D rats.

UNASSIGNED

The IBS-D rat model was successfully established. A total of 24 miRNAs were differentially expressed in the distal colon of IBS-D rats; 9 were upregulated and 15 were downregulated. Among them, the most significant upregulation was miR-200a, accompanied by downregulation of cannabinoid receptor 1 (CNR1) and serotonin transporter (SERT). MiR-200a mimic markedly inhibited the expression of CNR1/SERT. Bioinformatic analysis and luciferase assay confirmed that CNR1/SERT are direct targets of miR-200a. Rescue experiments that overexpressed CNR1/SERT significantly abolished the inhibitory effect of miR-200a on the IBS-D rats CECs.

UNASSIGNED

This study suggests that miR-200a could induce visceral hyperalgesia by targeting the downregulation of CNR1 and SERT, aggravating or leading to the development and progression of IBS-D. MiR-200a may be a regulator of visceral hypersensitivity, which provides potential targets for the treatment of IBS-D.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge