Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2019-Jun

Partial replacement of nitrate by ammonium increases photosynthesis and reduces oxidative stress in tanzania guinea grass exposed to cadmium.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Tiago Leite
Francisco Monteiro

키워드

요약

In order to grow and effectively uptake and accumulate cadmium (Cd), plants used for phytoextraction have to cope with toxicity, which may be influenced by the supply of nitrate (NO3-) and ammonium (NH4+). Thus, we evaluated the effect of these nitrogen forms on the photosynthetic and antioxidant enzyme activities of Panicum maximum cv. Tanzania (tanzania guinea grass) under Cd stress. Plants were grown in nutrient solution under greenhouse conditions and subjected to a 3 × 3 factorial experiment. They were supplied with three NO3-/NH4+ ratios (100/0, 70/30 and 50/50) and exposed to three Cd rates (0.0, 0.5 and 1.0 mmol L-1), being arranged in a randomized complete block design with three replications. Gas exchange parameters, oxidative stress indicators, proline concentration and antioxidant enzyme activities were studied. Exposure to Cd reduced photosynthesis by causing stomatal closure and impairing electron transport. However, the simultaneous supply of NO3- and NH4+, particularly at a 50/50 ratio, restored gas exchange and improved the function of photosystem II, increasing the photosynthetic capacity of the grass. Plants grown with 50/50 showed reduced lipid peroxidation along with increased proline synthesis. Moreover, this NO3-/NH4+ ratio increased the tolerance of tanzania guinea grass to Cd by inducing high superoxide dismutase and glutathione reductase activities in shoots and roots, respectively, maintaining cellular homeostasis and reducing oxidative stress. The negative effects of Cd on photosynthesis and on the balance between oxidants and antioxidants are attenuated by the partial replacement of NO3- by NH4+ in the nutrient solution.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge