Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2008-Aug

Physiological and molecular characterization of aluminum resistance in Medicago truncatula.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Divya Chandran
Natasha Sharopova
Kathryn A VandenBosch
David F Garvin
Deborah A Samac

키워드

요약

BACKGROUND

Aluminum (Al) toxicity is an important factor limiting crop production on acid soils. However, little is known about the mechanisms by which legumes respond to and resist Al stress. To explore the mechanisms of Al toxicity and resistance in legumes, we compared the impact of Al stress in Al-resistant and Al-sensitive lines of the model legume, Medicago truncatula Gaertn.

RESULTS

A screen for Al resistance in 54 M. truncatula accessions identified eight Al-resistant and eight Al-sensitive lines. Comparisons of hydroponic root growth and root tip hematoxylin staining in an Al-resistant line, T32, and an Al-sensitive line, S70, provided evidence that an inducible Al exclusion mechanism occurs in T32. Transcriptional events associated with the Al resistance response were analyzed in T32 and S70 after 12 and 48 h Al treatment using oligonucleotide microarrays. Fewer genes were differentially regulated in response to Al in T32 compared to S70. Expression patterns of oxidative stress-related genes, stress-response genes and microscopic examination of Al-treated root tips suggested a lower degree of Al-induced oxidative damage to T32 root tips compared to S70. Furthermore, genes associated with cell death, senescence, and cell wall degradation were induced in both lines after 12 h of Al treatment but preferentially in S70 after 48 h of Al treatment. A multidrug and toxin efflux (MATE) transporter, previously shown to exude citrate in Arabidopsis, showed differential expression patterns in T32 and S70.

CONCLUSIONS

Our results identified novel genes induced by Al in Al-resistant and sensitive M. truncatula lines. In T32, transcription levels of genes related to oxidative stress were consistent with reactive oxygen species production, which would be sufficient to initiate cell death of Al-accumulating cells thereby contributing to Al exclusion and root growth recovery. In contrast, transcriptional levels of oxidative stress-related genes were consistent with excessive reactive oxygen species accumulation in S70 potentially resulting in necrosis and irreversible root growth inhibition. In addition, a citrate-exuding MATE transporter could function in Al exclusion and/or internal detoxification in T32 based on Al-induced transcript localization studies. Together, our findings indicate that multiple responses likely contribute to Al resistance in M. truncatula.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge