Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Functional and Integrative Genomics 2014-Jun

Quantitative resistance in potato leaves to late blight associated with induced hydroxycinnamic acid amides.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Kalenahalli N Yogendra
Doddaraju Pushpa
Kareem A Mosa
Ajjamada C Kushalappa
Agnes Murphy
Teresa Mosquera

키워드

요약

Late blight is a serious economic threat to potato crop, sometimes leading to complete crop loss. The resistance in potato to late blight can be qualitative or quantitative in nature. Qualitative resistance is not durable. Though quantitative resistance is durable, the breeding is challenging due to polygenic inheritance. Several quantitative trait loci (QTLs) have been identified, but the mechanisms of resistance are largely unknown. A nontargeted metabolomics approach was used to identify resistance-related (RR) metabolites in a resistant genotype (F06025), as compared to a susceptible (Shepody) genotype, mock- or pathogen-inoculated. The RR metabolites, which had high fold change in abundance, mainly belonged to phenylpropanoid, flavonoid, fatty acid, and alkaloid chemical groups. The most important phenylpropanoids identified were hydroxycinnamic acid amides, the polyaromatic domain of suberin that is known to be associated with cell wall reinforcement. These metabolites were mapped on to the potato metabolic pathways, and the candidate enzymes and their coding genes were identified. A quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay revealed a higher upregulation of 4-coumarate: CoA ligase (4-CL), tyrosine decarboxylase (TyDC), and tyramine hydroxycinnamoyl transferase (THT) in the pathogen-inoculated resistant genotype than in susceptible. These genes were sequenced in both resistant and susceptible genotypes, and nonsynonymous single-nucleotide polymorphisms (nsSNPs) were found. The application of these genes in potato resistance improvement, following validation, is discussed.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge