Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2009-Oct

Role of transitory carbon reserves during adjustment to climate variability and source-sink imbalances in oil palm (Elaeis guineensis).

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
S Legros
I Mialet-Serra
A Clement-Vidal
J-P Caliman
F A Siregar
D Fabre
M Dingkuhn

키워드

요약

Oil palm (Elaeis guineensis Jacq.) is a perennial, tropical, monocotyledonous plant characterized by simple architecture and low phenotypic plasticity, but marked by long development cycles of individual phytomers (a pair of one leaf and one inflorescence at its axil). Environmental effects on vegetative or reproductive sinks occur with various time lags depending on the process affected, causing source-sink imbalances. This study investigated how the two instantaneous sources of carbon assimilates, CO(2) assimilation and mobilization of transitory non-structural carbohydrate (NSC) reserves, may buffer such imbalances. An experiment was conducted in Indonesia during a 22-month period (from July 2006 to May 2008) at two contrasting locations (Kandista and Batu Mulia) using two treatments (control and complete fruit pruning treatment) in Kandista. Measurements included leaf gas exchange, dynamics of NSC reserves and dynamics of structural aboveground vegetative growth (SVG) and reproductive growth. Drought was estimated from a simulated fraction of transpirable soil water. The main sources of variation in source-sink relationships were (i) short-term reductions in light-saturated leaf CO(2) assimilation rate (A(max)) during seasonal drought periods, particularly in Batu Mulia; (ii) rapid responses of SVG rate to drought; and (iii) marked lag periods between 16 and 29 months of environmental effects on the development of reproductive sinks. The resulting source-sink imbalances were buffered by fluctuations in NSC reserves in the stem, which mainly consisted of glucose and starch. Starch was the main buffer for sink variations, whereas glucose dynamics remained unexplained. Even under strong sink limitation, no negative feedback on A(max) was observed. In conclusion, the different lag periods for environmental effects on assimilate sources and sinks in oil palm are mainly buffered by NSC accumulation in the stem, which can attain 50% (dw:dw) in stem tops. The resulting dynamics of growth and production are complex because several dozen phytomers of different phenological ages develop at any given time and interact with a common pool of reserves.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge