Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physiology and Pharmacology 2018-Dec

Standarized Tribulus terrestris extract protects against rotenone-induced oxidative damage and nigral dopamine neuronal loss in mice.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
S Alzahrani
W Ezzat
R Elshaer
A El-Lateef
H Mohammad
A Elkazaz
E Toraih
S Zaitone

키워드

요약

Strong evidence proposes that brain oxidative DNA damage and microglia activation contribute to Parkinson's disease (PD) pathogenesis. Traditional therapeutic regimens for PD can only relieve the symptoms. Tribulus terrestris (T. terrestris), a flowering plant from family Zygophyllaceae, is used in traditional medicine for treating different disorders and exerts neuroprotective and antioxidant effects in experimental models. The current study attempted to test whether treatment with T. terrestris standardized extract (TTE) can improve motor dysfunction and alleviate rotenone induced oxidative DNA damage and neurotoxicity in mice. Six groups of male Swiss albino mice were utilized. Group (1) was the vehicle (oil) group, group 2 was the rotenone control group (1 mg/kg/48 hours, subcutaneously) for 9 times, groups 3 and 4 were injected with rotenone and treated with TTE (5 or 10 mg per kg, by oral gavage) for 17 days, groups 5 and 6 served as TTE (5 or 10 mg per kg) per se groups. Motor function was measured by the pole and the open-field tests. Then, mouse brains were dissected, one hemisphere was employed for biochemical assays and the other one was used in histopathological studies. Results demonstrated that TTE ameliorated the motor dysfunctions induced by rotenone as well as markers of inflammation and DNA damage (8-OHdG and MTH1 expression). Indicators of oxidative stress and upregulation of the microglia marker (CD11b) were suppressed by the higher dose of TTE (10 mg per kg). Finally, the higher dose of TTE improved the Cresyl violet staining and tyrosine hydroxylase immunostaining in the substantia nigra. In summary, TTE ameliorated the locomotor dysfunction and dampened the DNA damage and oxidoinflammatory stress in rotenone-parkinsonian mice. These results suggest TTE as a potential candidate for neurodegenerative diseases.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge