Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS Pathogens 2018-02

The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Dennapa Saeloh
Varomyalin Tipmanee
Kin Ki Jim
Marien P Dekker
Wilbert Bitter
Supayang P Voravuthikunchai
Michaela Wenzel
Leendert W Hamoen

키워드

요약

The acylphloroglucinol rhodomyrtone is a promising new antibiotic isolated from the rose myrtle Rhodomyrtus tomentosa, a plant used in Asian traditional medicine. While many studies have demonstrated its antibacterial potential in a variety of clinical applications, very little is known about the mechanism of action of rhodomyrtone. Preceding studies have been focused on intracellular targets, but no specific intracellular protein could be confirmed as main target. Using live cell, high-resolution, and electron microscopy we demonstrate that rhodomyrtone causes large membrane invaginations with a dramatic increase in fluidity, which attract a broad range of membrane proteins. Invaginations then form intracellular vesicles, thereby trapping these proteins. Aberrant protein localization impairs several cellular functions, including the respiratory chain and the ATP synthase complex. Being uncharged and devoid of a particular amphipathic structure, rhodomyrtone did not seem to be a typical membrane-inserting molecule. In fact, molecular dynamics simulations showed that instead of inserting into the bilayer, rhodomyrtone transiently binds to phospholipid head groups and causes distortion of lipid packing, providing explanations for membrane fluidization and induction of membrane curvature. Both its transient binding mode and its ability to form protein-trapping membrane vesicles are unique, making it an attractive new antibiotic candidate with a novel mechanism of action.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge