Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Endocrinology and Metabolism 2020-Mar

Blueberry proanthocyanidins and anthocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice.

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Arianne Morissette
Camille Kropp
Jean-Philippe Songpadith
Rafael Moreira
Janice Costa
Roger Casadó
Genevieve Pilon
Thibault Varin
Stéphanie Dudonné
Lemia Boutekrabt

키워드

요약

Blueberry consumption can prevent obesity-linked metabolic diseases and it has been proposed that its polyphenol content may contribute to these effects. Polyphenols have been shown to favourably impact metabolic health, but the role of specific polyphenol classes, and whether the gut microbiota is linked to these effects remains unclear. We aimed to evaluate the impact of whole blueberry and blueberry polyphenols against the development of obesity and insulin resistance, and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Seventy C57BL/6 male mice were assigned to one of the following diets for 12 weeks: balanced diet (Chow), high-fat high-sucrose (HFHS) diet, or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT) or proanthocyanidin (PAC)-rich extracts. After 8 weeks, mice were housed in metabolic cages and an oral glucose tolerance test (oGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups bi-weekly for 8 weeks, followed by an oGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC and ANT-treated mice showed improved insulin responses during oGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity, and that at least part of these beneficial effects are explained by modulation of the gut microbiota.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge