Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2020-Jun

Flavonoids from Scutellaria baicalensis inhibit senescence-associated secretory phenotype production by interrupting IκBζ/C/EBPβ pathway: Inhibition of age-related inflammation

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Hyun Lim
Yong Kwon
Donghoon Kim
Jongkook Lee
Hyun Kim

키워드

요약

Background: Prolonged exposure to the senescence-associated secretory phenotype (SASP) with age leads to chronic low-grade inflammation in neighboring cells and tissues, causing many chronic degenerative diseases.

Purpose: The effects on SASP production of the ethanol extract from Scutellaria radix and 17 isolated flavonoid constituents were examined in vitro and in vivo.

Methods: Cellular senescence was induced by bleomycin. Expression of the SASP and cell signaling molecules was detected using ELISA, RT-qPCR, Western blotting, and immunofluorescence staining. To investigate the in vivo effects, 21-month-old aged rats were used.

Results: The ethanol extract and 5 compounds including 1 (Oroxylin A; 5,7-dihydroxy-6-methoxyflavone), 5 (2',6',5,7-tetrahydroxy-8-methoxyflavone), 8 (2',5,7-trihydroxyflavone), 10 (2',5,7-trihydroxy-8-methoxyflavone) and 11 (2',5,7-trihydroxy-6-methoxyflavone) potently reduced IL-6 and IL-8 production and gene expression of the SASP, including IL-1α, IL-1β, IL-6, IL-8, GM-CSF, CXCL1, MCP-2, and MMP-3. This finding indicates the important role of the B-ring 2'‑hydroxyl group in flavonoid molecules. Furthermore, compounds 8 and 11, the strongest SASP inhibitors, decreased the expression of IκBζ and C/EBPβ protein without affecting either BrdU uptake or the expression of senescence markers, such as pRb and p21. Finally, the oral administration of compound 8 to aged rats at 2 and 4 mg/kg/day for 10 days significantly inhibited the gene expression of SASP and IκBζ in kidneys. This is the first report of the strong SASP inhibitory action of flavonoids from Scutellaria radix on in vitro and in vivo senescence models. The inhibitory action was shown to be mediated mainly by interfering with the IκBζ/C/EBPβ signaling pathway.

Conclusion: Targeting production of the SASP using flavonoids from Scutellaria radix or its extract might help reduce low-grade sterile inflammation and control age-related diseases.

Keywords: C/EBPβ; Chronic low-grade inflammation; IκBζ; SASP; Scutellaria baicalensis; Senescence.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge