Korean
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Huanjing Kexue/Environmental Science 2020-Apr

[Response of Soil Enzyme Activity and Chemical Properties to Nitrogen Addition in a Korean Pine Plantation]

등록 된 사용자 만 기사를 번역 할 수 있습니다.
로그인 / 가입
링크가 클립 보드에 저장됩니다.
Lai-Xin Lü
Lei Song
Zhi-Li Liu
Jin-Bo Zhang
Guang-Ze Jin

키워드

요약

Soil enzymes participate in numerous complex biochemical processes that take place in the soil and play an important role in the material circulation of terrestrial ecosystems. To explore the response of soil enzyme activities and chemical properties to nitrogen deposition in temperate forests, this study analyzed four soil enzyme activities based on the nitrogen addition experiment plot of Korean pine (Pinus koraiensis) plantation, which was located in the Liangshui National Natural Reserve, Heilongjiang Province. The results showed that the activities of N-acetyl-glucosidase (NAG) and alkaline phosphatase (AKP) increased significantly with increasing nitrogen application concentration. The activity of beta-glucosidase (BG) and acid phosphatase (ACP) was not significantly different among different nitrogen application treatments. The contents of total carbon, total nitrogen, total phosphorus, and available nitrogen and four enzyme activity in the upper soil (0-10 cm) under the same nitrogen application level were significantly higher than those in the lower soil (10-20 cm), but the pH values were not significantly different. Total carbon has an extremely significant positive correlation with NAG, BG, AKP, and ACP. Total nitrogen has an obvious or extremely significant positive correlation with BG, NAG, and AKP as well as ACP. The available nitrogen has an obvious and highly significant positive correlation with NAG and AKP. The total phosphorus has an obvious and extremely significant positive correlation with ACP and AKP, respectively. The nitrogen application level and the soil layer had different effects on soil enzyme activity and soil chemical properties. Long-term large input of nitrogen can directly or indirectly change soil chemical properties and affect soil enzyme activity.

Keywords: hydrolase; nitrogen application level; nitrogen deposition; soil chemical property; temperate forest.

페이스 북
페이지에 가입하세요

과학이 뒷받침하는 가장 완벽한 약초 데이터베이스

  • 55 개 언어로 작동
  • 과학이 뒷받침하는 약초 치료제
  • 이미지로 허브 인식
  • 인터랙티브 GPS지도-위치에 허브 태그 지정 (출시 예정)
  • 검색과 관련된 과학 출판물 읽기
  • 효과로 약초 검색
  • 관심사를 정리하고 뉴스 연구, 임상 실험 및 특허를 통해 최신 정보를 확인하세요.

증상이나 질병을 입력하고 도움이 될 수있는 약초에 대해 읽고 약초를 입력하고 사용되는 질병과 증상을 확인합니다.
* 모든 정보는 발표 된 과학 연구를 기반으로합니다.

Google Play badgeApp Store badge